TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI EM REDUÇÃO LSZ
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
Em física de partículas, o número bariônico, ou número bariónico, é um número quântico invariante ou nulo. Pode ser definido como um terço do número de quarks menos o número de antiquarks dentro do sistema:
- X
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Em física de partículas, o número bariônico, ou número bariónico, é um número quântico invariante ou nulo. Pode ser definido como um terço do número de quarks menos o número de antiquarks dentro do sistema:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde
- é o número de quarks, e
- é o número de antiquarks.
Todos os fenômenos físicos que ocorrem na natureza podem ser descritos em termos de quatro interações fundamentais. Elas são fundamentais no sentido de que não podem ser reduzidas a interações mais básicas. Cada interação descreve como uma dada característica, como a massa de uma partícula, ou conjunto de partículas, afeta outras partículas com essa mesma característica.
Segundo o modelo padrão, cada uma dessas interações é mediada pela troca de bósons entre as partículas na qual elas atuam. Essas partículas que mediam as interações são virtuais e, por isso, não podem ser observadas diretamente. Isso justifica o porquê de os efeitos dessas interações não serem sentidas instantaneamente, já que a maior velocidade que elas podem se propagar é com a velocidade da luz. Para que uma partícula virtual possa ser emitida sem violar a conservação de energia, a mesma deve ser reabsorvida em um intervalo de tempo tão curto quanto o permitido pelo princípio da incerteza. Porém, esses bósons mediadores podem ser tornar reais caso seja fornecida energia equivalente à energia de repouso deles.[2]
Consequentemente o alcance de uma dada interação está relacionado com a massa do bóson mediador. Assim, quanto maior a massa do bóson mediador, menor será o alcance da interação. Cada interação também apresenta um chamado tempo de interação, de forma que a troca de bósons virtuais é feita dentro desse tempo.
A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.
A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas características específicas de cada interação:[2]
Interação Bóson mediador Massa () Fonte Alcance (m) Tempo de interação (s) Constante de acoplamento Forte Glúon 0 Carga de cor Eletromagnética Fóton 0 Carga elétrica Fraca 81,91 Carga fraca Gravitacional Gráviton 0 Massa
X
onde
- é o número de quarks, e
- é o número de antiquarks.
Todos os fenômenos físicos que ocorrem na natureza podem ser descritos em termos de quatro interações fundamentais. Elas são fundamentais no sentido de que não podem ser reduzidas a interações mais básicas. Cada interação descreve como uma dada característica, como a massa de uma partícula, ou conjunto de partículas, afeta outras partículas com essa mesma característica.
Segundo o modelo padrão, cada uma dessas interações é mediada pela troca de bósons entre as partículas na qual elas atuam. Essas partículas que mediam as interações são virtuais e, por isso, não podem ser observadas diretamente. Isso justifica o porquê de os efeitos dessas interações não serem sentidas instantaneamente, já que a maior velocidade que elas podem se propagar é com a velocidade da luz. Para que uma partícula virtual possa ser emitida sem violar a conservação de energia, a mesma deve ser reabsorvida em um intervalo de tempo tão curto quanto o permitido pelo princípio da incerteza. Porém, esses bósons mediadores podem ser tornar reais caso seja fornecida energia equivalente à energia de repouso deles.[2]
Consequentemente o alcance de uma dada interação está relacionado com a massa do bóson mediador. Assim, quanto maior a massa do bóson mediador, menor será o alcance da interação. Cada interação também apresenta um chamado tempo de interação, de forma que a troca de bósons virtuais é feita dentro desse tempo.
A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.
A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas características específicas de cada interação:[2]
Interação Bóson mediador Massa () Fonte Alcance (m) Tempo de interação (s) Constante de acoplamento Forte Glúon 0 Carga de cor Eletromagnética Fóton 0 Carga elétrica Fraca 81,91 Carga fraca Gravitacional Gráviton 0 Massa
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Número quântico principal, n
O número quântico principal pode tomar como valor qualquer número inteiro positivo. Como o próprio nome o sugere, este número quântico é o mais importante, pois o seu valor define a energia do átomo de hidrogênio (e de outro átomo monoelectrónico de carga nuclear Z) por meio da equação:
onde m e e são a massa dos nêutrons e a carga do elétron, ε0 é a permissividade do vácuo, e h é a constante de Planck. Esta equação foi obtida como resultado da equação de Schrodinger e é desigual a uma das equações obtidas por Bohr, utilizando os seus postulados correctos.
X
O número quântico principal pode tomar como valor qualquer número inteiro positivo. Como o próprio nome o sugere, este número quântico é o mais importante, pois o seu valor define a energia do átomo de hidrogênio (e de outro átomo monoelectrónico de carga nuclear Z) por meio da equação:
onde m e e são a massa dos nêutrons e a carga do elétron, ε0 é a permissividade do vácuo, e h é a constante de Planck. Esta equação foi obtida como resultado da equação de Schrodinger e é desigual a uma das equações obtidas por Bohr, utilizando os seus postulados correctos.
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
No contexto da física teórica de partículas, o tensor de força do campo de glúons é um campo tensorial de segunda ordem que caracteriza a interação entre os glúons e os quarks.
A interação forte é uma das interações fundamentais da natureza e a teoria quântica de campos (TQC) que a descreve é denominada cromodinâmica quântica. Quarks interagem uns com os outros por meio da força forte devido a sua carga de cor, força essa mediada por glúons. Os próprios glúons possuem carga de cor e por conta disso podem também interagir mutualmente.
O tensor de força do campo de glúons é um tensor de rank 2 no espaço-tempo com valores no fibrado adjunto do grupo de gauge cromodinâmico SU(3). Nesse artigo, índices com letras latinas (tipicamente a, b, c, n) tomam os valores 1, 2, ..., 8 para as oito cargas de cor dos glúons, enquanto índices de letras gregas while (tipicamente α, β, μ, ν) tomam valores 0 para componentes tipo tempo e 1, 2, 3 para componentes tipo espaço de quadrivetores e tensores quadridimensionais no espaço tempo. Em todas as equações, a convenção estabelecida pela notação de Einstein é usada em todos os índices de cor e tensoriais, a menos que esteja explicitamente dito que a soma não deve ser efetuada.
No contexto da física teórica de partículas, o tensor de força do campo de glúons é um campo tensorial de segunda ordem que caracteriza a interação entre os glúons e os quarks.
A interação forte é uma das interações fundamentais da natureza e a teoria quântica de campos (TQC) que a descreve é denominada cromodinâmica quântica. Quarks interagem uns com os outros por meio da força forte devido a sua carga de cor, força essa mediada por glúons. Os próprios glúons possuem carga de cor e por conta disso podem também interagir mutualmente.
O tensor de força do campo de glúons é um tensor de rank 2 no espaço-tempo com valores no fibrado adjunto do grupo de gauge cromodinâmico SU(3). Nesse artigo, índices com letras latinas (tipicamente a, b, c, n) tomam os valores 1, 2, ..., 8 para as oito cargas de cor dos glúons, enquanto índices de letras gregas while (tipicamente α, β, μ, ν) tomam valores 0 para componentes tipo tempo e 1, 2, 3 para componentes tipo espaço de quadrivetores e tensores quadridimensionais no espaço tempo. Em todas as equações, a convenção estabelecida pela notação de Einstein é usada em todos os índices de cor e tensoriais, a menos que esteja explicitamente dito que a soma não deve ser efetuada.
Definição
Componentes tensoriais
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
no qual:
onde
- i é a unidade imaginária;
- gs é a constante de acoplamento da força forte;
- ta = λa/2 são as matrizes de Gell-Mann λa divididas por 2;
- a é o índice de cor na representação adjunta de SU(3) que toma os valores1, 2, ..., 8 para os oito geradores do grupo, a saber as matrizes de Gell-Mann.
- μ é um índice do espaço-tempo, 0 para componentes do tipo tempo e 1,2, 3 para componentes tipo espaço;
- expressa o campo gluônico, um campo de gauge de spin 1, ou no jargão da geometria diferencial, uma conexão no fibrado principal de SU(3);
- são os quatro componentes (dependentes do sistema de coordenadas), que em determinado gauge fixo são funções cujos valores são matrizes hermitianas 3 × 3 de traço nulo, ao passo que são as 32 funções reais, as quatro componentes para cada um dos oito campos vetoriais.
Autores diferentes escolhem sinais diferentes.
Expandindo o comutador, tem-se;
Substituindo e o usando as relações de comutação para as matrizes de Gell-Mann (com uma reindexação dos índices), onde f abc são as constantes de estrutura de SU(3), cada uma das componentes da força do campo de glúons pode ser expressa como uma combinação linear das matrizes de Gell-Mann como segue:
- X
no qual:
onde
- i é a unidade imaginária;
- gs é a constante de acoplamento da força forte;
- ta = λa/2 são as matrizes de Gell-Mann λa divididas por 2;
- a é o índice de cor na representação adjunta de SU(3) que toma os valores1, 2, ..., 8 para os oito geradores do grupo, a saber as matrizes de Gell-Mann.
- μ é um índice do espaço-tempo, 0 para componentes do tipo tempo e 1,2, 3 para componentes tipo espaço;
- expressa o campo gluônico, um campo de gauge de spin 1, ou no jargão da geometria diferencial, uma conexão no fibrado principal de SU(3);
- são os quatro componentes (dependentes do sistema de coordenadas), que em determinado gauge fixo são funções cujos valores são matrizes hermitianas 3 × 3 de traço nulo, ao passo que são as 32 funções reais, as quatro componentes para cada um dos oito campos vetoriais.
Autores diferentes escolhem sinais diferentes.
Expandindo o comutador, tem-se;
Substituindo e o usando as relações de comutação para as matrizes de Gell-Mann (com uma reindexação dos índices), onde f abc são as constantes de estrutura de SU(3), cada uma das componentes da força do campo de glúons pode ser expressa como uma combinação linear das matrizes de Gell-Mann como segue:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde novamente a, b, c = 1, 2, ..., 8 são índices de cor. Como no caso do campo de glúons, em um sistema de coordenadas específico e com um gauge fixo, os Gαβ são funções que tem como valor matrizes hermitianas 3×3, enquanto Gaαβ são funções reais, que vem a ser as componentes de oito campos tensoriais quadridimensionais de segunda ordem.
X
onde novamente a, b, c = 1, 2, ..., 8 são índices de cor. Como no caso do campo de glúons, em um sistema de coordenadas específico e com um gauge fixo, os Gαβ são funções que tem como valor matrizes hermitianas 3×3, enquanto Gaαβ são funções reais, que vem a ser as componentes de oito campos tensoriais quadridimensionais de segunda ordem.
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Comparação com o tensor eletromagnético
Há um paralelo quase perfeito entre o tensor de força dos glúons e o tensor de campo eletromagnético (geralmente denotado por F ) na eletrodinâmica quântica, dado pelo quadripotencial eletromagnético A descrevendo um fóton de spin 1;
- X
Há um paralelo quase perfeito entre o tensor de força dos glúons e o tensor de campo eletromagnético (geralmente denotado por F ) na eletrodinâmica quântica, dado pelo quadripotencial eletromagnético A descrevendo um fóton de spin 1;
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
ou na linguagem das formas diferenciais:
- X
ou na linguagem das formas diferenciais:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A principal diferença entre eletrodinâmica quântica e cromodinâmica quântica é que o tensor de força do campo do glúon tem termos extras que conduzem a auto-interações entre glúons. Isso causa uma complicação na teoria da força forte, fazendo com que ela seja inerentemente não-linear, ao contrário da força eletromagnética. QCD é uma teoria não-abeliana de gauge. A palavra não-abeliana em linguage de teoria de grupos significa que uma operação no grupo não é comutativa, o que faz com a álgebra de Lie correspondente seja não-trivial.
A principal diferença entre eletrodinâmica quântica e cromodinâmica quântica é que o tensor de força do campo do glúon tem termos extras que conduzem a auto-interações entre glúons. Isso causa uma complicação na teoria da força forte, fazendo com que ela seja inerentemente não-linear, ao contrário da força eletromagnética. QCD é uma teoria não-abeliana de gauge. A palavra não-abeliana em linguage de teoria de grupos significa que uma operação no grupo não é comutativa, o que faz com a álgebra de Lie correspondente seja não-trivial.
Densidade lagrangeana da QCD
Características de todas as teorias de campo, a dinâmica dos campos de força estão resumidas por uma densidade lagrangeana apropriada e da substituição dessa nas equações de Euler–Lagrange (para campos) obtêm-se as equações de movimento para o campo. A densidade lagrangeana para quarks sem massa, ligados por glúons é: [2]
- X
Características de todas as teorias de campo, a dinâmica dos campos de força estão resumidas por uma densidade lagrangeana apropriada e da substituição dessa nas equações de Euler–Lagrange (para campos) obtêm-se as equações de movimento para o campo. A densidade lagrangeana para quarks sem massa, ligados por glúons é: [2]
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde "tr" denota traço das matrizes 3×3 GαβGαβ, e γμ são matrizes gama 4×4.
onde "tr" denota traço das matrizes 3×3 GαβGαβ, e γμ são matrizes gama 4×4.
Transformações de gauge
Em contraste com a QED, o tensor de força do campo do glúon não é invariante de gauge por si. Apenas o produto de dois tensores contraídos sobre todos os índices é invariante.
Em contraste com a QED, o tensor de força do campo do glúon não é invariante de gauge por si. Apenas o produto de dois tensores contraídos sobre todos os índices é invariante.
Equaçõeas de movimento
As equações[1] governando a evolução dos campos de quark são:
- X
As equações[1] governando a evolução dos campos de quark são:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que é como a equação de Dirac, e a equação para o tensor de força do campo do glúon é:
- X
que é como a equação de Dirac, e a equação para o tensor de força do campo do glúon é:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que são similares as equações de Maxwell (quando escritar em notação tensorial), mais especificamente as equações de Yang–Mills para glúons. A quadricorrente de carga de cor é a fonte do tensor de força do campo de glúon, análogo a quadricorrente como fonte do tensor eletromagnético, dada por
- X
que são similares as equações de Maxwell (quando escritar em notação tensorial), mais especificamente as equações de Yang–Mills para glúons. A quadricorrente de carga de cor é a fonte do tensor de força do campo de glúon, análogo a quadricorrente como fonte do tensor eletromagnético, dada por
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que é uma corrente conservada, uma vez que a carga de cor é conservada, em outras palavras a quadricorrente de cor deve satisfazer a seguinte equação da continuidade:
que é uma corrente conservada, uma vez que a carga de cor é conservada, em outras palavras a quadricorrente de cor deve satisfazer a seguinte equação da continuidade:
Veja também
Em geometria diferencial, o tensor de Einstein (também tensor de traço revertido de Ricci), nomeado em relação a Albert Einstein, é usado para expressar a curvatura de uma variedade de Riemann. Em relatividade geral, o tensor de Einstein aparece nas equações de campo de Einstein para a gravitação descrevendo a curvatura do espaço-tempo.
Definição
O tensor de Einstein é um tensor de ordem definido sobre variedades riemannianas. Ele é definido como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
sendo o tensor de Ricci, o tensor métrico e o escalar de curvatura de Ricci. Em notação com índices, o tensor de Einstein tem a forma
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede.[1] Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado.
Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver ação de Wilson-Ginsparg. Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite formalmente dá a ação de contínuo original.
Mais precisamente, nós temos um retículo com vértices, grafos e faces. Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível fiel ρ de G, o retículo ação de Yang-Mills é
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
(a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada.
Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas".
Comentários
Postar um comentário